TURBULENT SCHMIDT NUMBER ESTIMATE OVER URBAN CANOPIES e SAP]ENZA
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(1) INTRODUCTION (2 METHOD

Urban environments are usually studied (numerically and experimentally) by considering simplified building
geometries by using arrays of obstacles with archetypal arrangements (Oke, 1988; Badas et al., 2018). » Laboratory estimation of the turbulent Schmidt number above an idealized three-dimensional urban canopy

Since pollutant dispersion in cities is mostly investigated numerically through Reynolds-Averaged Navier-Stokes
models, a question arises regarding the values to assign to the turbulent mass and momentum fluxes in the
governing equations. These unknowns are currently modelled by using first-order closures, which involve the
definition of exchange coefficients such as the eddy diffusivities of momentum (Ky) and mass (D,).

In current practice, Ky is assumed proportional to the turbulent kinetic energy and to its rate of dissipation,
while D, = Ky(Sc,) "}, where Sc, is the turbulent Schmidt number. The choice of Sc, is not straightforward and » Simultaneous measurements of pollutant concentration and velocity permitted the estimation of the vertical

» Reproduction of a urban canopy by means of staggered array of cubic obstacles of equal heights with plan
area index, A,=0.25, placed on the channel bottom

» A point source emitted a passive tracer at a constant rate above the cube array

influences considerably the numerical results. It must be set prior the simulation and it is generally assumed to fluxes of mass and momentum
fall in the range 0.2-1.3 (Blocken et al., 2008). Experimental estimates of Sc, require the simultaneous knowledge
of turbulent fluxes of momentum and scalars, generally obtained in the laboratory (Monti et al., 2007; Carpentieri » Ky and D, were estimated in order to investigate the dependence of Sc, on the height above the canopy

et al.,, 2012; Nosek et al., 2016; Tomas et al., 2017; Di Bernardino et al., 2018).

3 EXPERIMENTAL SETUP @ RESULTS
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Pollutant emission simulated by a mixture of water and Rhodamine-WT, continuously released by the source located at the
center of the upwind building belonging to the interrogation area.

< GEOMETRICAL CONFIGURATION

Ap = 0.25 (wake interference regime)

< ACQUISITION SYSTEM

* LD PUMPED ALL-SOLID-STATE GREEN LASER
- wavelength: 532 nm - power: 5 W

 RHODAMINE WT — WATER (C,4H,4N,0O:Cl)
- excitation wavelength: 532 nm (green) - emission wavelength: 687 nm (red)

- source concentration: 2.5 x 103 kg m3 - mass flow rate: 11.9x10-!! kg s W W L L

Vertical profiles of the normalized concentration (c/c., red line) and vertical turbulent mass flux (w'c’/u.c.,

- source height: 1.67H circles) taken at two downwind distances from the tracer source.

. High SPeed-CMos-Camera -------------------------------------------------------------------------------------------------------------------------------
- resolution: 1280 x 1024 pixels - frame rate: 250 Hz 2 T T T T T 1
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(5 CONCLUSIONS

Both the estimated Sc, show a clear increase with height up to z = 1.75H, i.e. within the roughness sublayer, and share nearly the same profile. This supports the hypothesis that the two profiles have been taken in a region where
Sc, no longer depends on the downstream distance.

The values obtained fall in the range 0.2-0.6, i.e. in line with other results reported in the literature in the case of flat terrain (Koeltzsch, 2000).
Further investigation is needed to assess reliable Sc,, taking also into consideration other array geometries.
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